

EP



In simple terms, electricity is produced when a flow of electrons (also called current flow) is passed through a conductor such as a wire.



Direction of Current (Electron) Flow

The inlet of the flow is considered the positive end and the outlet is considered the negative end.

#### Electricity & Magnetism:

When an object such as an iron bar (Ferrous core) is placed within this current flow, the object becomes magnetized. This ferrous core will have, like all magnets, a north and a south side (pole).



The side of the iron bar in the current flow inlet will be the North Pole of that magnet and the side of the iron bar in the current flow outlet will be the South Pole.

#### Alternating Current (AC):

DC voltage (Direct Current) flows in a circuit from positive to negative.

AC voltage (Alternating Current) voltage changes the direction of current flow in the circuit, over a period of time.



Direction of Current (Electron) Flow

This back-and-forth shifting of current flow is called Frequency.

1 Complete Cycle = 1 Back & 1 Forth shift

The frequency is expressed in Hertz (Cycle per Second).

North American standard = 60Hz (120 Back & Forth shifts)

All electric motors consist of three essential parts:

- . The Stator (Stationary Part)
- . The Rotor (Rotating Part)
- . Bearings (Mechanical support for the Rotor)



#### Induction / Magnetic Field

Line voltage  $\rightarrow$ 

Statoric rotary current  $\rightarrow$ 

Magnetic rotating field in the Stator  $\rightarrow$ 

Induced Rotor voltage  $\rightarrow$ 

Rotor current  $\rightarrow$ 

Magnetic field in the Rotor  $\rightarrow$ 



The interaction of the rotating magnetic field of the Stator and the magnetic field of the Rotor produces the torque and it is the coupling of the magnetic fields that produces the rotation of the shaft.

#### Power / Magnetic Flux Density

The power, or the amount of "work" that a motor can do, is determined by the strength of the magnetic field that the stator windings can produce.

The strength of the magnetic field is determined by the amount of wire conductors (stator wire) and the current flowing through them.

Therefore, by having more internal space, a larger motor will generally provide more power since the total amount of stator wire is greater than that of a smaller motor.







Large Motor Windings

#### Efficiency

Not only does the amount of stator wire determine the horsepower potential, it can also affect the efficiency of a motor.

Modern winding techniques allow more wires to be inserted into each slot than before.

1) Increased density of magnetic forces (more power in the same space).

2) Decreased energy loss (lower operating temperature).

3) Extended life expectancy.



Standard Efficiency Motor Windings

(192 conductors)

Higher Efficiency Motor Windings

(220 conductors)

#### High Efficiency Designs

4 key advantages of a "NEMA Premium" vs Standard Efficiency design motors:

- 1) Extended rotor and stator which produces stronger magnetic fields.
- 2) Improved tolerance by reducing the space between the rotor and stator and improving the magnetic characteristics of the motor.
- 3) Greater quantity of wire in stator windings.
- 4) Higher quality silicon steel in the frame, stator and rotor cores, rather than lower quality carbon steel.



#### Electric motors are designed so that they can self-cool



# Enclosures Type

| Types                                        | Characteristics                                                                                                                                                                                                                                                                                                                                                     |                                         |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Open:                                        |                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| Open Drip Proof (ODP)                        | Constructed with ventilation openings located such that drops of<br>liquid or solid particiles striking or entering the encolure at any<br>angle from 0 - 15° downward from vertical do not interfere with<br>proper operation.                                                                                                                                     |                                         |
| Open Drip Proof Guarded (ODPG)               | ODP machine with ventilation openings guarded with screen (less than 3/4 inch in diameter).                                                                                                                                                                                                                                                                         |                                         |
| Open Air-Over (OPAO)                         | Air over machine is intended to be cooled externally, usually by load (Fan) driven by motor.                                                                                                                                                                                                                                                                        | ODP, (IP12, IC01)                       |
| Weather Protected Type 1 (WPI)               | Guarded machine with its ventilation passages so constructed as<br>to minimize the entrance of rain, snow and air-bourne particles<br>to the electrical parts. These ventilation passages are less than<br>3/4 inch in diameter.                                                                                                                                    | WP1, (IP13, IC01)<br>WP11, (IP13, IC01) |
| Weather Protected Type II (WPII)             | Weather-protected type I machine in addition shall have its<br>ventilation passages so constructed with baffling or separate<br>housing to create at least 3 abrupt direction changes of at least<br>90°, in addition to a low velocity area (less than 600 ft/min.) to<br>minimize the possibility of moisture or dirt being carried into the<br>electrical parts. | -                                       |
| Totally Enclosed:                            |                                                                                                                                                                                                                                                                                                                                                                     | -                                       |
| Totally Enclosed Non Ventilated (TENV)       | Depends on convection for air cooling.                                                                                                                                                                                                                                                                                                                              | -                                       |
| Totally Enclosed Fan-Cooled (TEFC)           | Has external cooling fan.                                                                                                                                                                                                                                                                                                                                           |                                         |
| Explosion Proof (TEXP)                       | Designed to withstand an internal explosion of specified gases or<br>vapors, and not allow the internal flame or explosion to escape.                                                                                                                                                                                                                               |                                         |
| Washdown (TEWD)                              | Designed to withstand high pressure washdowns or other high<br>humidity or wet environments.                                                                                                                                                                                                                                                                        |                                         |
| Totally Enclosed Air Over (TEAO)             | Dust-tight fan and designed for shaft mounted fans or belt driven<br>fans. The motor must be mounted within the airflow of the fan.                                                                                                                                                                                                                                 | TEFC, (IP40+, IC411)                    |
| Totally Enclosed Air-to-Air Machine (TEAAC)  | Cooled by circulating the internal air through a heat exchanger<br>which, in turn, is cooled by circulating external air. It is provided<br>with an air-to-air heat exchanger for cooling the internal air, a<br>fan integral with the rotor shaft or separate, for circulating the<br>internal air and a separate fan for circulating the external air.            | TEAO (IP40+)<br>TEXP, (IP50+, IC31+)    |
| Totally Enclosed Water Cooled (TEWC)         | Cooled by circulating water and with the water or water<br>conductors come in direct contact with the machine parts.                                                                                                                                                                                                                                                |                                         |
| Totally Enclosed Water-to-Air Cooled (TEWAC) | Cooled by circulating air which, in turn, is cooled by circulating<br>water. These motors are provided with a water-cooled heat<br>exchanger for cooling the internal and a fan(s), integral with the<br>rotor shaft separate, for circulating the internal air.                                                                                                    |                                         |

MEP

### **Motor Parts**





#### Synchronous Speed (RPM)

Quantity of pole (2)  $\rightarrow$ 

Frequency (50Hz, 60Hz)  $\rightarrow$ 

Data:

Geometrical configuration of the coils (120°)





(60 \* 120) / 2 = RPM (7200) / 2 = RPM 3600 = RPM

(50 \* 120) / 2 = RPM (6000) / 2 = RPM 3000 = RPM

Synchronous Speed (RPM)

Quantity of pole (4)  $\rightarrow$ 

Frequency (50Hz, 60Hz)  $\rightarrow$ 

Data:

Geometrical configuration of the coils (120°)





(60 \* 120) / 4 = RPM (7200) / 4 = RPM

1800 = RPM

(50 \* 120) / 4 = RPM (6000) / 4 = RPM 1500 = RPM



Synchronous Speed (RPM)

Quantity of pole (6)  $\rightarrow$ 

Frequency (50Hz, 60Hz)  $\rightarrow$ 

Data:

Geometrical configuration of the coils (120°)





(7200) / 6 = RPM

1200 = RPM

(50 \* 120) / 6 = RPM (6000) / 6 = RPM 1000 = RPM



#### Synchronous Speed (RPM)

Quantity of pole (8)  $\rightarrow$ 

Frequency (50Hz, 60Hz)  $\rightarrow$ 

Data:

Geometrical configuration of the coils (120°)



(60 \* 120) / 8 = RPM

(7200) / 8 = RPM

900 = RPM

8-POLE

(50 \* 120) / 8 = RPM (6000) / 8 = RPM

750 = RPM

#### Speed vs Slip

Without load, the rotor rotates at the speed of the rotating field of the stator (or almost).

Br

- We call it synchronous motor speed.
- With a load, the speed of the rotor shifts with the rotating stator field.
- Magnetic fluxes from the motor amplify, creating motor Torque.
- This phase shift is called the Slip.
- The Synchronous Speed The Slip = Asynchronous Speed
- ▶ The motor Torque is proportional to the motor Slip.

#### Speed vs Torque

Two important factors that determine the mechanical power of a motor:

- Speed
- Torque

Torque is the unit of measurement for the mechanical power either required or produced.

The most popular: lb-ft, lb-in and Nm (Newton Meter)





The power is calculated as the product of the Speed and the Torque

- Power = Speed (RPM) x Torque (lb-ft) / 5252
- (1HP (2P) = 1.49 lb-ft)
  (1HP (4P) = 2.92 lb-ft)

(1HP (6P) =4.38 lb-ft)

- ▶ 1 HP = 746W
- BHP = HP before mechanical losses (pulley / belt, gearbox)
- North America: HP, Standardized manufacturing process : MG1
- Europe: Kw, Standardized manufacturing process : IEC

Characteristics of Torque / Speed

A) Locked Rotor Torque (LRT):

B) Pull Up Torque (PUT):

C) Breakdown Torque (BDT).

D) Full Load Torque (FLT).





In order to facilitate the choice of motors, NEMA (National Electrical Manufacturers Association) standardized the characteristics of Torque / Speed for a "Squirrel-Cage" motor up to 200HP.



# The motor nameplate contains the essential information for its replacement.

- 1) Typical manufacturer's enclosure (TEFC, ODP, etc.)
- 2) Manufacturer's frame (NEMA, IEC)
- 3) Power Rating (HP, Kw)
- 4) Service Factor (SF: 1.00, 1.15, etc.)
- 5) Operating Time (Duty: Continuous, etc.)
- 6) Ambient Temperature: (Maximum  $\degree$ C)
- 7) Insulation Class Designation (B, F, H)
- 8) RPM: Revolutions per minute at rated load (3550, 1750, etc.)
- 9) Operating Frequency (50, 60 Hz)
- 10) Quantity of Phases (1, 3 ph.)
- 11) Amperage at the Rated Load (FLA:, SFA: )
- 12) Rated Voltage (208 230/460, 575)
- 13) Locked Rotor KVA Code (Code G, H, etc.)
- 14) Torque Profile Code (Design A, B, C, D)
- 15) Full Load Efficiency (91.7%, etc.) Nema Premium
- 16) Notification of options when present (RTD, Thermistors, Thermostats)
- 17) Although the wiring diagram is not always on the nameplate, it is part of the required information to replace a motor
- 18) Protection: IP12, 43, 55, 66, etc.
- 19) Lubrification
- 20) Compatibility with VFD

| Max Mot    | tion <b>(E</b> | Energy Verified<br>253965 CC340B                                                                                                                                                        |                                                       |
|------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| MODEL:     |                | INVERTER DUTY 10:1 C                                                                                                                                                                    | T 20:1 VT                                             |
| FRAME      | PH:            | HZ                                                                                                                                                                                      |                                                       |
| MAX. AMB.: | DUTY:          | HP                                                                                                                                                                                      |                                                       |
| EFF.:      | INSUL:         | RPM                                                                                                                                                                                     |                                                       |
| CODE:      | ENCL:          | VOLT                                                                                                                                                                                    |                                                       |
| SER#:      | Date Code:     | FLA                                                                                                                                                                                     |                                                       |
|            | H VOLTS        | S.F.                                                                                                                                                                                    |                                                       |
|            |                | ENTLY LUBRICATED-BALL BE<br>LURE TO FOLLOW ALL SAFETY INFORM<br>RIOUS PERSONAL INJURY OR DEATH.D<br>JEFORE SERVICING.INSTALL AND GROU<br>ATIONAL CODES. CONSULT QUALIFIED I<br>ESTIONS. | ARING<br>ATION CAN<br>ISCONNECT<br>ND PER<br>PERSONAL |

#### **Nema Quick Reference Dimensional Chart**





Visit www.mep.ca and select specific MaxMotion model for "AB", "O", & "P" Dimensions

Refer to your MEP catalog for "C" Dim.

| FRAME | D     | E    | 2F    | н        | U     | N-W  | AA    | AH   | AJ     | AK     | BA   | BB    | BD    | н       |
|-------|-------|------|-------|----------|-------|------|-------|------|--------|--------|------|-------|-------|---------|
|       |       |      |       |          |       |      |       |      |        |        |      | (MIN) | (MAX) | (HOLES) |
| 48    | 3.00  | 2.12 | 2.75  | .34 SLOT | .5000 | 1.50 | 1/2   | 1.69 | 3.750  | 3.000  | 2.50 | .13   | 5.62  | 1/4-20  |
| 56    | 3.50  | 2.44 | 3.00  | .34 SLOT | .6250 | 1.88 | 1/2   | 2.06 | 5.875  | 4.500  | 2.75 | .13   | 6.50  | 3/8-16  |
| 56H   | 3.50  | 2.44 | 5.00  | .34 SLOT | .6250 | 1.88 | 1/2   | 2.06 | 5.875  | 4.500  | 2.75 | .13   | 6.50  | 3/8-16  |
| 143T  | 3.50  | 2.75 | 4.00  | .34      | .8750 | 2.25 | 3/4   | 2.12 | 5.875  | 4.500  | 2.25 | .13   | 6.50  | 3/8-16  |
| 145T  | 3.50  | 2.75 | 5.00  | .34      | .8750 | 2.25 | 3/4   | 2.12 | 5.875  | 4.500  | 2.25 | .13   | 6.50  | 3/8-16  |
| 182   | 4.50  | 3.75 | 4.50  | .41      | .8750 | 2.25 | 3/4   | 2.12 | 5.875  | 4.500  | 2.75 | .13   | 6.50  | 3/8-16  |
| 184   | 4.50  | 3.75 | 5.50  | .41      | .8750 | 2.25 | 3/4   | 2.12 | 5.875  | 4.500  | 2.75 | .13   | 6.50  | 3/8-16  |
| 182T  | 4.50  | 3.75 | 4.50  | .41      | 1.125 | 2.75 | 3/4   | 2.62 | 7.250  | 8.500  | 2.75 | .25   | 9.00  | 1/2-13  |
| 184T  | 4.50  | 3.75 | 5.50  | .41      | 1.125 | 2.75 | 3/4   | 2.62 | 7.250  | 8.500  | 2.75 | .25   | 9.00  | 1/2-13  |
| 213   | 5.25  | 4.25 | 5.50  | .41      | 1.125 | 3.00 | 1     | 2.75 | 7.250  | 8.500  | 3.50 | .25   | 9.00  | 1/2-13  |
| 215   | 5.25  | 4.25 | 7.00  | .41      | 1.125 | 3.00 | 1     | 2.75 | 7.250  | 8.500  | 3.50 | .25   | 9.00  | 1/2-13  |
| 213T  | 5.25  | 4.25 | 5.50  | .41      | 1.375 | 3.38 | 1     | 3.12 | 7.250  | 8.500  | 3.50 | .25   | 9.00  | 1/2-13  |
| 215T  | 5.25  | 4.25 | 7.00  | .41      | 1.375 | 3.38 | 1     | 3.12 | 7.250  | 8.500  | 3.50 | .25   | 9.00  | 1/2-13  |
| 254U  | 6.25  | 5.00 | 8.25  | .53      | 1.375 | 3.75 | 1-1/4 | 3.50 | 7.250  | 8.500  | 4.25 | .25   | 10.00 | 1/2-13  |
| 256U  | 6.25  | 5.00 | 10.00 | .53      | 1.375 | 3.75 | 1-1/4 | 3.50 | 7.250  | 8.500  | 4.25 | .25   | 10.00 | 1/2-13  |
| 254T  | 6.25  | 5.00 | 8.25  | .53      | 1.625 | 4.00 | 1-1/4 | 3.75 | 7.250  | 8.500  | 4.25 | .25   | 10.00 | 1/2-13  |
| 256T  | 6.25  | 5.00 | 10.00 | .53      | 1.625 | 4.00 | 1-1/4 | 3.75 | 7.250  | 8.500  | 4.25 | .25   | 10.00 | 1/2-13  |
| 284U  | 7.00  | 5.50 | 9.50  | .53      | 1.625 | 4.88 | 1-1/2 | 4.62 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 286U  | 7.00  | 5.50 | 11.00 | .53      | 1.625 | 4.88 | 1-1/2 | 4.62 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 284T  | 7.00  | 5.50 | 9.50  | .53      | 1.875 | 4.62 | 1-1/2 | 4.38 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 286T  | 7.00  | 5.50 | 11.00 | .53      | 1.875 | 4.62 | 1-1/2 | 4.38 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 284TS | 7.00  | 5.50 | 9.50  | .53      | 1.625 | 3.25 | 1-1/2 | 3.00 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 286TS | 7.00  | 5.50 | 11.00 | .53      | 1.625 | 3.25 | 1-1/2 | 3.00 | 9.000  | 10.500 | 4.75 | .25   | 11.25 | 1/2-13  |
| 324U  | 8.00  | 6.25 | 10.50 | .66      | 1.875 | 5.62 | 2     | 5.38 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 326U  | 8.00  | 6.25 | 12.00 | .66      | 1.875 | 5.62 | 2     | 5.38 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 324T  | 8.00  | 6.25 | 10.50 | .66      | 2.125 | 5.25 | 2     | 5.00 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 326T  | 8.00  | 6.25 | 12.00 | .66      | 2.125 | 5.25 | 2     | 5.00 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 324TS | 8.00  | 6.25 | 10.50 | .66      | 1.875 | 3.75 | 2     | 3.50 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 326TS | 8.00  | 6.25 | 12.00 | .66      | 1.875 | 3.75 | 2     | 3.50 | 11.000 | 12.500 | 5.25 | .25   | 14.00 | 5/8-11  |
| 364U  | 9.00  | 7.00 | 11.25 | .66      | 2.125 | 6.38 | 2-1/2 | 6.12 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 365U  | 9.00  | 7.00 | 12.25 | .66      | 2.125 | 6.38 | 2-1/2 | 6.12 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 364T  | 9.00  | 7.00 | 11.25 | .66      | 2.375 | 5.88 | 2-1/2 | 5.62 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 365T  | 9.00  | 7.00 | 12.25 | .66      | 2.375 | 5.88 | 2-1/2 | 5.62 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 364TS | 9.00  | 7.00 | 11.25 | .66      | 1.875 | 3.75 | 2-1/2 | 3.50 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 365TS | 9.00  | 7.00 | 12.25 | .66      | 1.875 | 3.75 | 2-1/2 | 3.50 | 11.000 | 12.500 | 5.88 | .25   | 14.00 | 5/8-11  |
| 404U  | 10.00 | 8.00 | 12.25 | .81      | 2.375 | 7.12 | 3     | 6.88 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 405U  | 10.00 | 8.00 | 13.75 | .81      | 2.375 | 7.12 | 3     | 6.88 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 404T  | 10.00 | 8.00 | 12.25 | .81      | 2.875 | 7.25 | 3     | 7.00 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 405T  | 10.00 | 8.00 | 13.75 | .81      | 2.875 | 7.25 | 3     | 7.00 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 404TS | 10.00 | 8.00 | 12.25 | .81      | 2.125 | 4.25 | 3     | 4.00 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 405TS | 10.00 | 8.00 | 13.75 | .81      | 2.125 | 4.25 | 3     | 4.00 | 11.000 | 12.500 | 6.62 | .25   | 15.50 | 5/8-11  |
| 444U  | 11.00 | 9.00 | 14.50 | .81      | 2.875 | 8.62 | 3     | 8.38 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 445U  | 11.00 | 9.00 | 16.50 | .81      | 2.875 | 8.62 | 3     | 8.38 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 444T  | 11.00 | 9.00 | 14.50 | .81      | 3.375 | 8.50 | 3     | 8.25 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 445T  | 11.00 | 9.00 | 16.50 | .81      | 3.375 | 8.50 | 3     | 8.25 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 444TS | 11.00 | 9.00 | 14.50 | .81      | 2.375 | 4.75 | 3     | 4.50 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 445TS | 11.00 | 9.00 | 16.50 | .81      | 2.375 | 4.75 | 3     | 4.50 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 447T  | 11.00 | 9.00 | 20.00 | .81      | 3.375 | 8.50 | 3     | 8.25 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 4491  | 11.00 | 9.00 | 25.00 | .81      | 3.375 | 8.50 | 3     | 8.25 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 44/1S | 11.00 | 9.00 | 20.00 | .81      | 2.375 | 4.75 | 4 NPT | 4.50 | 14.000 | 16.000 | 7.50 | .25   | 18.00 | 5/8-11  |
| 44715 | 11.00 | A'00 | Z5.UU | .81      | 2.3/5 | 4./5 | 4 NP1 | 4.50 | 14.000 | 16.000 | 7.50 | .20   | 18.00 | 5/8-11  |

#### IEC QUICK REFERENCE KEY DIMENSIONS CHART



#### **IEC Frame Dimensions (Millimeters)**

|        | Mounting |     |     |     | Shaft  |          |             | General |      |     | B5 Flange |     |     | B14 Flange |     |     |     |
|--------|----------|-----|-----|-----|--------|----------|-------------|---------|------|-----|-----------|-----|-----|------------|-----|-----|-----|
| FRAME  | A        | B   |     | н   | D      |          |             | DB      | L    | AC  | AD        | м   | N   | P          | м   | N   | P   |
| 56     | 90       | 71  | 36  | 56  | 9      | 20       | 3           | M3      | 199  | 113 | 97        | 100 | 80  | 120        | 65  | 50  | 80  |
| 63     | 100      | 80  | 40  | 63  | 11     | 23       | 4           | M4      | 217  | 120 | 103       | 115 | 95  | 140        | 75  | 60  | 90  |
| 71     | 112      | 90  | 45  | 71  | 14     | 30       | 5           | M5      | 245  | 136 | 112       | 130 | 110 | 160        | 85  | 70  | 105 |
| 80     | 125      | 100 | 50  | 80  | 19     | 40       | 6           | M6      | 300  | 158 | 135       | 165 | 130 | 200        | 100 | 80  | 120 |
| 905    | 140      | 100 | 56  | 90  | 24     | 50       | 8           | M8      | 320  | 175 | 138       | 165 | 130 | 200        | 115 | 95  | 140 |
| 90 L   | 140      | 125 | 56  | 90  | 24     | 50       | 8           | M8      | 345  | 175 | 138       | 165 | 130 | 200        | 115 | 95  | 140 |
| 100L   | 160      | 140 | 63  | 100 | 28     | 60       | 8           | M10     | 405  | 198 | 160       | 215 | 180 | 250        | 130 | 110 | 160 |
| 112M   | 190      | 140 | 70  | 112 | 28     | 60       | 8           | M10     | 400  | 230 | 178       | 215 | 180 | 250        | 130 | 110 | 160 |
| 1325   | 216      | 140 | 89  | 132 | 38     | 80       | 10          | M12     | 445  | 258 | 188       | 265 | 230 | 300        | 165 | 130 | 200 |
| 132M   | 216      | 178 | 89  | 132 | 38     | 80       | 10          | M12     | 485  | 258 | 188       | 265 | 230 | 300        | 165 | 130 | 200 |
| 160 M  | 254      | 210 | 108 | 160 | 42     | 110      | 12          | M16     | 615  | 315 | 242       | 300 | 250 | 350        | 215 | 180 | 250 |
| 160L   | 254      | 254 | 108 | 160 | 42     | 110      | 12          | M16     | 660  | 315 | 242       | 300 | 250 | 350        | 215 | 180 | 250 |
| 180 M  | 279      | 241 | 121 | 180 | 48     | 110      | 14          | M16     | 652  | 355 | 267       | 300 | 250 | 350        |     |     |     |
| 180 L  | 279      | 279 | 121 | 180 | 48     | 110      | 14          | M16     | 690  | 355 | 267       | 300 | 250 | 350        |     |     |     |
| 200 L  | 318      | 305 | 133 | 200 | 55     | 110      | 16          | M20     | 746  | 400 | 304       | 350 | 300 | 400        |     |     |     |
| 2255   | 356      | 286 | 149 | 225 | 55*/60 | 110*/140 | 16*/18      | M20     | 780  | 446 | 326       | 400 | 350 | 450        |     |     |     |
| 225 M  | 356      | 311 | 149 | 225 | 55*/60 | 110*/140 | $16^{*}/18$ | M20     | 810  | 446 | 326       | 400 | 350 | 450        |     |     |     |
| 250 M  | 406      | 349 | 168 | 250 | 60*/65 | 140      | 18          | M20     | 900  | 485 | 358       | 500 | 450 | 550        |     |     |     |
| 280 \$ | 457      | 368 | 190 | 280 | 65*/75 | 140      | $18^{*}/20$ | M20     | 982  | 547 | 387       | 500 | 450 | 550        |     |     |     |
| 280 M  | 457      | 419 | 190 | 280 | 65*/75 | 140      | 18*/20      | M20     | 1033 | 547 | 387       | 500 | 450 | 550        |     |     |     |
| 3155   | 508      | 406 | 216 | 315 | 65*/80 | 140*/170 | 18*/20      | M20     | 1208 | 620 | 527       | 550 | 600 | 660        |     |     |     |
| 315 M  | 508      | 457 | 216 | 315 | 65*/80 | 140*/170 | 18*/20      | M20     | 1318 | 620 | 527       | 550 | 600 | 660        |     |     |     |
| 315 L  | 508      | 508 | 216 | 315 | 65*/80 | 140*/170 | 18*/20      | M20     | 1388 | 620 | 527       | 550 | 600 | 660        |     |     |     |

\* Denotes dimensions in mm for 2 Pole - 3600 RPM Motors

GENERAL Notes - Dimensions are specific to MaxMotion Design and may vary from different manufacturers











FLOOR MOUNTINGS

ASSEMBLY F-2

WALL MOUNTINGS











ASSEMBLY F-3



ASSEMBLY W-6



ASSEMBLY W-12







ASSEMBLY W-11

#### CEILING MOUNTINGS







ASSEMBLY C-3







NEMA maximum temperature rise for a continuous duty motor and resistance measurement method, in an ambient of 40°C at less than 1000 meters altitude

|               |                         | Insulation Class        |                         |                         |  |  |  |  |  |  |  |
|---------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--|--|--|--|
| Туре          | A<br>(105°C)<br>(221°F) | B<br>(130°C)<br>(266°F) | F<br>(155°C)<br>(311°F) | H<br>(180°C)<br>(356°F) |  |  |  |  |  |  |  |
| ODP (SF 1.0)  | 60                      | 80                      | 105                     | 125                     |  |  |  |  |  |  |  |
| TEFC (SF 1.0) | 60                      | 80                      | 105                     | 125                     |  |  |  |  |  |  |  |
| TENV (SF 1.0) | 65                      | 85                      | 110                     | 130                     |  |  |  |  |  |  |  |
| SF 1.15 or +  | 70                      | 90                      | 115                     | 130                     |  |  |  |  |  |  |  |

Note: Temperature above in Celsius



# Life Span of Insulation as a function of Temperature



For every 10°C of temperature rise, life expectancy is reduces by half

## Network Nominal Voltage vs Motor Nameplate Voltage

| Network Nominal Voltage    | Nameplate Voltage |
|----------------------------|-------------------|
| 120 VAC – 1 phase          | 115 VAC           |
| 208 / 120 VAC – 3 phases   | 200 VAC           |
| 240 VAC – 1 or 3 phases    | 230 VAC           |
| 480 / 277 VAC – 3 phases   | 460 VAC           |
| 600 / 347 VAC – 3 phases   | 575 VAC           |
| 2400 VAC – 3 phases        | 2300 VAC          |
| 4160 / 2400 VAC – 3 phases | 4000 VAC          |

## Motor Characteristics vs Voltage Fluctuation

|                      | 90%  | 110% | 120%      |
|----------------------|------|------|-----------|
| Locked Rotor Torque  | -19% | +21% | +44%      |
| Start Up Curent      | -10% | +10% | +25%      |
| % Slip               | +23% | -17% | -30%      |
| Efficiency           | -2%  | +1%  | +1.5%     |
| Power Factor         | +1%  | -3%  | -5 to 15% |
| Full Load Current    | +11% | -7%  | -11%      |
| Temperature Increase | +7%  | -4%  | -21%      |

# Voltage Imbalance and Effects on Motor Performance

|         | Phase A-B | Phase B-C | Phase A-C |
|---------|-----------|-----------|-----------|
| Voltage | 460       | 467       | 450       |

#### Calculation of the Phase Imbalance Percentage

```
Average = 460 + 467 + 450 / 3
Average = 459
% Imbalance = 100 * Max Voltage Deviation – Average / Average
% =100 * 9/459
% = 1.96%
```

Small unbalanced Voltage / Phase results in larger unbalanced Current / Phase.
Electric motors are designed to accept 1% unbalanced voltage.
More than 1%, motor performance will be affected.
To compensate: - Load reduction

- Motor derating (SF 1.0 – SF 1.15)

A motor should never be operated with an unbalanced voltage of 5% or more.



## NEMA KVA Start Up Current Code

| Code Letter | KVA / HP    | Code Letter | KVA / HP                |
|-------------|-------------|-------------|-------------------------|
| A           | 0 – 3.15    | K           | 8.0 – 9.0               |
| B           | 3.15 – 3.55 | L           | 9.0 – 10.0              |
| C           | 3.55 – 4.0  | M           | 10.0 -11.2              |
| D           | 4.0 – 4.5   | N           | 11.2 – 12.5             |
| E           | 4.5 – 5.0   | P           | 12.5 – 14.0             |
| F           | 5.0 – 5.6   | R           | 14.0 – 16.0             |
| G           | 5.6 – 6.3   | S           | 16.0 – 18.0             |
| H           | 6.3 – 7.1   | T           | 18.0 – 20.0             |
| J           | 7.1 – 8.0   | U<br>V      | 20.0 – 22.4<br>22.4 & + |

Start up KVA /HP = Voltage \* Locked Rotor Current \* 1.732 / HP \* 1000

Locked Rotor Current = Start up KVA /HP \* HP \* 1000 / Volts \* 1.732

# AC MOTORS





E Pasz







# AC MOTORS





# Terminology

- Voltage: Volts
- Current: Amps
- Kw: Volts x Amps
- Ambient Temperature: 40°C
- Temperature Rise: ≤ 80°C
- Altitude: 1,000 M (3,300 ft)
- Service Factor: 1.15
- Power Factor: 0.8
- Efficiency: 90%
- Enclosure Cooling: ODP, TEFC
- Environment: IP23, IP41, IP55, IP56, IP66
- Frame: 48, 56, 143T 449T
- Cooling: ODP, TEFC
- Mechanical Assembly: Horizontal, vertical  $\uparrow \downarrow$ , legs, flange C or D.
- Derating Factors: Service Factor (1.0, 1.15, 1.25, etc.)
- Start/Stop Cycle: (X / hours)
- Start-up: DOL, Star / Delta, 2 speeds 1 winding, 2 speeds 2 windings, Softstarter, VFD

#### NEMA MG-1 Table 12-12 Full Load Efficiencies for 60 Hz NEMA Premium<sup>®</sup> (CEE) Efficient Electric Motors Rated 600 Volts or less (Random Wound)

MEP

|       | NOMINAL FULL LOAD EFFICIENCY |        |        |        |        |         |          |        |  |  |
|-------|------------------------------|--------|--------|--------|--------|---------|----------|--------|--|--|
| HP    |                              | OPEN   | FRAME  |        |        | ENCLOSE | ED FRAME |        |  |  |
|       | 2 POLE                       | 4 POLE | 6 POLE | 8 POLE | 2 POLE | 4 POLE  | 6 POLE   | 8 POLE |  |  |
| 1     | 77.0                         | 85.5   | 82.5   | N/A    | 77.0   | 85.5    | 82.5     | N/A    |  |  |
| 1 1/2 | 84.0                         | 86.5   | 86.5   | N/A    | 84.0   | 86.5    | 87.5     | N/A    |  |  |
| 2     | 85.5                         | 86.5   | 87.5   | N/A    | 85.5   | 86.5    | 88.5     | N/A    |  |  |
| 3     | 85.5                         | 89.5   | 88.5   | N/A    | 86.5   | 89.5    | 89.5     | N/A    |  |  |
| 5     | 86.5                         | 89.5   | 89.5   | N/A    | 88.5   | 89.5    | 89.5     | N/A    |  |  |
| 7 1/2 | 88.5                         | 91.0   | 90.2   | N/A    | 89.5   | 91.7    | 91.0     | N/A    |  |  |
| 10    | 89.5                         | 91.7   | 91.7   | N/A    | 90.2   | 91.7    | 91.0     | N/A    |  |  |
| 15    | 90.2                         | 93.0   | 91.7   | N/A    | 91.0   | 92.4    | 91.7     | N/A    |  |  |
| 20    | 91.0                         | 93.0   | 92.4   | N/A    | 91.0   | 93.0    | 91.7     | N/A    |  |  |
| 25    | 91.7                         | 93.6   | 93.0   | N/A    | 91.7   | 93.6    | 93.0     | N/A    |  |  |
| 30    | 91.7                         | 94.1   | 93.6   | N/A    | 91.7   | 93.6    | 93.0     | N/A    |  |  |
| 40    | 92.4                         | 94.1   | 94.1   | N/A    | 92.4   | 94.1    | 94.1     | N/A    |  |  |
| 50    | 93.0                         | 94.5   | 94.1   | N/A    | 93.0   | 94.5    | 94.1     | N/A    |  |  |
| 60    | 93.6                         | 95.0   | 94.5   | N/A    | 93.6   | 95.0    | 94.5     | N/A    |  |  |
| 75    | 93.6                         | 95.0   | 94.5   | N/A    | 93.6   | 95.4    | 94.5     | N/A    |  |  |
| 100   | 93.6                         | 95.4   | 95.0   | N/A    | 94.1   | 95.4    | 95.0     | N/A    |  |  |
| 125   | 94.1                         | 95.4   | 95.0   | N/A    | 95.0   | 95.4    | 95.0     | N/A    |  |  |
| 150   | 94.1                         | 95.8   | 95.4   | N/A    | 95.0   | 95.8    | 95.8     | N/A    |  |  |
| 200   | 95.0                         | 95.8   | 95.4   | N/A    | 95.4   | 96.2    | 95.8     | N/A    |  |  |
| 250   | 95.0                         | 95.8   | 95.4   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |
| 300   | 95.4                         | 95.8   | 95.4   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |
| 350   | 95.4                         | 95.8   | 95.4   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |
| 400   | 95.8                         | 95.8   | 95.8   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |
| 450   | 95.8                         | 96.2   | 96.2   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |
| 500   | 95.8                         | 96.2   | 96.2   | N/A    | 95.8   | 96.2    | 95.8     | N/A    |  |  |

# What Causes Motor Failure

The majority of motor breakdowns are caused by bearing or winding failures.



- Manufacturing Defect
- Ambient temperature too high
- Contaminants
- Water, condensation
- Lack of ventilation
- Winding failure
- Locked rotor
- Overload
- Too much grease during maintenance
- Poor quality of the ground
- Faulty bearings
- Bearing failure
- Over voltage / Under voltage

- Transient voltage peak
- Unbalanced voltage Ø-Ø
- VFD output voltage
- Cable length vs voltage drop
- Loose power connections
- Damaged power wiring
- Overload relay incorrectly selected
- Phase loss
- Start/Stop cycle too high
- Altitude above 1,000 M (3,300 ft)
- Poor electrical installation of VFD
- Vibration
- Wrong application of the motor

## A mechanical failure often causes an electrical failure





# Main Causes of Bearing Failure

- Excessive vibration
- Loss of lubrication efficiency by contaminants
- Wrong grease added
- Bearing temperature too hot/cold
- Poor assembly of a motor to the load
- Misalignment
- Overload (belt tension)
- Humidity (water, corrosion)
- Harmful induced electromagnetic current due to the use of VFD





## **Belt Tension and Misalignment**







PARALLEL PU MISALIGNMENT

PULLEY GROOVE AXIAL MISALIGNMENT

- Harmful Induced Electromagnetic Current due to the use of VFD
- Common-mode Current



# Extend the Life of Your Motor

Protect your Marathon motor against VFD-induced bearing currents with



Shaft Grounding Technology!



Capable of saving 30% or more in energy costs, VFDs can help you create "green" systems, and with patented AEGIS™ SGR technology to protect motor bearings, these systems will be sustainable and truly green.

- Safely channels harmful currents away from bearings to ground
- Proven in hundreds of thousands of installations
- Easy to install, contamination-proof, maintenance-free, lasts for life of motor
- Standard sizes for any motor









# Vibrations

Excessive vibration reduces bearing life span and adversely affects the motor efficiency.

Breakdown factors:

- . Improper driven load balancing.
- . Improper alignment of the coupling.
- . Wear over time.
- . Shaft current discharge through bearing to ground

Bearing vibration limits defined by NEMA:

| Synchronous Speed (RPM) | Vibration Amplitude (in) |  |  |  |  |
|-------------------------|--------------------------|--|--|--|--|
| 3000 and +              | 0,0010                   |  |  |  |  |
| 1500 to 2999            | 0,0015                   |  |  |  |  |
| 1000 to 1599            | 0,0020                   |  |  |  |  |
| 999 and -               | 0,0025                   |  |  |  |  |



# General purpose motor is designed to receive a sinusoidal voltage.



Example of the PWM voltage provided by a Variable Frequency Drive





# MG1 Parts 30

For NEMA, a general purpose motor must have a standard electrical design and a standard limitation to withstand voltage spikes produced by inverters (commonly referred to as VFD).

MG1-30.02.2.9 stipulates that voltage peaks at the motor terminals should be limited to 1000 volts with a rise time no less than 2 microseconds ( $\mu$ sec). Since the inverters on the market today can produce voltage peaks as short as .04 to 0.3  $\mu$ sec therefore potentially much higher voltage peaks, a filter must be installed between the inverter and the motor for it to survive and thus comply with this standard. It is the user's responsibility to ensure that the motor will not be damaged by the inverter that powers it.

# MG1 Parts 31

For NEMA, Parts 31 defines only motors for definite purpose use with inverterpowered design. The industrial market needs it, but the HVAC market does not need all the features of this definition and is limited to MG1 parts 31.4.4.2 et 31.4.4.3 specifications.

MG1 parts 31.4.4.2 defines the voltage peaks incurred by the motor which may be at the level of: 3.1 \* the nominal motor voltage. 230 \* 3.1 = 713V 460 \* 3.1 = 1426V 575 \* 3.1 = 1783V The incurred rise time will be no less than 1 microseconds (uses)

The incurred rise time will be no less than .1 microseconds ( $\mu$ sec).

These voltage levels do not take into account the cable length between the motor and the inverter or the carrier frequency to be used in the inverter.

MG1 parts 31.4.4.3 describes the phenomenon of damage to the rotation of the induced electromagnetic current, but is not clear on the standard method of measurement. However, all manufacturers have solutions to propose when required.

# Why are voltage levels at the terminals of a motor so high?

#### **Inverter Basics:**

- Convert AC to DC (575 \* 1.4)
- IGBT pulse 800Vwhen gate opens, therefore on a cycle +800 and -800 = 1600V
- Destructive effect of "CIV" Corona Inception Voltage begins @ 1000V
- Change of impedance of power cable vs motor



As voltage increases, the electrostatic fields become strong enough to ionize surrounding air molecules, stripping off electrons



Electrons accelerate toward the conductors & bombard the insulated surfaces, eroding the protective layer like tiny sandblasters







#### Variable Speed Operation

Guidelines for Application of General Purpose, Three Phase, Single Speed Motors on Variable Frequency Drives Meets NEMA MG1-2006 Part 30 and Part 31 Section 4.4.2 Unless stated otherwise, motor nameplates do NOT include listed speed range.

| ENCLOSURE                            | EFFICIENCY              | VARIABLE TORQUE                                     |                                                                                                                                                                                                                                       | CON        | CONSTANT TORQUE |           |          |                     |          |        |          |  |  |
|--------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------|----------|---------------------|----------|--------|----------|--|--|
|                                      |                         | ALL FRAMES                                          | 56                                                                                                                                                                                                                                    | 143        | -215            | 5 254-286 |          | 324-365             |          | 404    | 449      |  |  |
| NEMA                                 | Motors                  | ALL POLES                                           | ALL POLES                                                                                                                                                                                                                             | 2-Pole     | 4&6 Pole        | 2-Pole    | 4&6 Pole | 2-Pole              | 4&6 Pole | 2-Pole | 4&6 Pole |  |  |
|                                      | Standard (EPAct exempt) | 10:1                                                | 2:1                                                                                                                                                                                                                                   | 2:1        | 2:1             |           | Con      | act Engineering     |          |        |          |  |  |
| ODP                                  | EPAct compliant         | 10:1                                                | N/A                                                                                                                                                                                                                                   | 2:1        | 2:1             | 2:1       | 2:1      | Contact Engineering |          |        |          |  |  |
|                                      | NEMA Premium (XRI)      | 10:1                                                | N/A                                                                                                                                                                                                                                   | 10:1       | 10:1            | 10:1      | 10:1     | 10:1                | 10:1     | 2:1    | 2:1      |  |  |
|                                      | Standard (EPAct exempt) | 10:1                                                | 2:1                                                                                                                                                                                                                                   | 2:1        | 2:1             |           | Con      | tact Engine         | eering   |        |          |  |  |
| TEFC                                 | EPAct compliant         | 10:1                                                | N/A                                                                                                                                                                                                                                   | 2:1        | 10:1            | 2:1       | 10:1     | 2:1                 | 2:1      | 2:1    | 2:1      |  |  |
|                                      | NEMA Premium (XRI)      | 10:1                                                | N/A                                                                                                                                                                                                                                   | 2:1        | 20:1            | 2:1       | 20:1     | 2:1                 | 20:1 (1) | 2:1    | 20:1 (1) |  |  |
| TENN                                 | EPAct compliant         | 10:1                                                | N/A                                                                                                                                                                                                                                   | 1000:1     | 1000:1          | 1000:1    | 1000:1   | 1000:1              | 1000:1   | 1000:1 | 1000:1   |  |  |
| TEINV                                | NEMA Premium (XRI)      | 10:1                                                | 1000:1                                                                                                                                                                                                                                | 1000:1     | 1000:1          | 1000:1    | 1000:1   | 1000:1              | 1000:1   | 1000:1 | 1000:1   |  |  |
| Washdown TEEC                        | Standard (EPAct exempt) | 10:1                                                | 10:1 (2)                                                                                                                                                                                                                              | 10:1 (2)   | 10:1 (2)        | N/A       | N/A      | N/A                 | N/A      | N/A    | N/A      |  |  |
| washuowii tero                       | EPAct compliant         | 10:1                                                | N/A                                                                                                                                                                                                                                   | 10:1 (2)   | 10:1 (2)        | N/A       | N/A      | N/A                 | N/A      | N/A    | N/A      |  |  |
| Washdown TENV                        | Standard (EPAct exempt) | 10:1                                                | 1000:1                                                                                                                                                                                                                                | 1000:1     | 1000:1          | N/A       | N/A      | N/A                 | N/A      | N/A    | N/A      |  |  |
| washuowii teiwy                      | EPAct compliant         | 10:1                                                | N/A                                                                                                                                                                                                                                   | 1000:1     | 1000:1          | N/A       | N/A      | N/A                 | N/A      | N/A    | N/A      |  |  |
| Explosion Proof                      | All efficiency levels   | Explosion Proof motors<br>pages for specific rating | Explosion Proof motors must be properly nameplated with inverter duty information prior to use on VFD. See Marathon catalog pages for specific rating capabilities. Motors with automatic overload protectors cannot be used on VFDs. |            |                 |           |          |                     |          |        | talog    |  |  |
| IEC N                                | otors                   | ALL FRAMES                                          | 63-90                                                                                                                                                                                                                                 | 100-225    |                 |           |          |                     |          |        |          |  |  |
| All Enclosures All efficiency levels |                         | 10:1                                                | 20:1                                                                                                                                                                                                                                  | Up to 20:1 |                 |           |          |                     |          |        |          |  |  |

#### Maximum Cable Lengths from the Motor to Drive

٠

| PRODUCT                                                    | 3 kHz CARRIER FREQUENCY (PHASE TO PHASE)* |           |          |
|------------------------------------------------------------|-------------------------------------------|-----------|----------|
| DESCRIPTION                                                | 230 VOLT                                  | 460 VOLT  | 575 VOLT |
| 56-326 NEMA, 100-225 IEC Frames                            | 600 ft.                                   | 125 ft.   | 40 ft.   |
| 364-5013 NEMA, 250-315 IEC Frames                          | 1000 ft.                                  | 225 ft.   | 60 ft.   |
| Motors with CR <sup>200</sup> Corona Resistant Magnet Wire | 1500 ft.                                  | 475 ft.   | 140 ft.  |
| Motors with MAX GUARD® insulation system                   | Unlimited                                 | Unlimited | 650 ft.  |
| Form-wound low voltage motors                              | Unlimited                                 | Unlimited | 650 ft.  |

Higher carrier frequencies require shorter cable length to obtain normal (50Khrs) insulation life.

# What makes a motor designed in compliance with MG1 Parts 31.4.4.2?

### Essentially, 3 things:

An insulated wire with a ceramic layer (Spike Resistant Wire)
 In each slot, more conductors are inserted to reduce area gaps



192 wires



3) When each group is inserted, great care is taken to ensure that the input and output conductors are not next to each other



#### Normal stator windings



Windings (Wye on the left & Delta on the right), failure due to loss of a phase





Phase-to-Phase short-circuit Windings. Possible causes: contaminants, abrasion, vibration or transient voltage spikes.



Windings with short-circuit coil. Possible causes: contaminants, abrasion, vibration or transient voltage spikes. Turn-to-Turn short-circuit Windings. Possible causes: contaminants, abrasion, vibration or transient voltage spikes.



Windings with short-circuit at the edge of the slot. Possible causes: contaminant, abrasion, vibration or transient voltage spikes.







Windings with short-circuit inside the slot. Possible cause: contaminants, abrasion, vibration or transient voltage spikes. Short-circuit at the connection of the winding groups. Possible cause: contaminants, abrasion, vibration or transient voltage spikes.





Windings damaged by unbalanced voltage.



#### Damaged windings: Cause: overload



Damaged windings : Cause: Locked rotor for too long



Windings damaged by a transient voltage peak. Possible cause: electronic power switching, electrical storm or partial discharge of an automatic correction system



The windings are considered normal if the resistance of the insulation is less than the values in Table 9-3. This indicates that the windings are dried out or damaged.

Table 9-3: Minimum Insulation Resistance of Motors

| Rated Voltage | Insulation Resistance |  |
|---------------|-----------------------|--|
|               |                       |  |
| 600 V and -   | 1,5 ΜΩ                |  |
| 2300 V        | 3,5 ΜΩ                |  |
| 4000 V        | 5 ΜΩ                  |  |

A check of the state of the insulation of a motor must be done at the following levels :

- For new motors: (2 \* nameplate voltage + 1000V) \* 1.7

- For motors already in use: 2 \* nameplate voltage + 1000V

# **Application Note**

### When to use a Line or Load Reactor

- The Line and Load reactors have very different functions.
- In simple terms, a Line Reactor protects the variable frequency drive and a Load Reactor protects the motor and the cable that powers it.
- An input or Line Reactor protects the VFD from disturbances in the power supply which can cause harmful shutdowns or damage to the VFD.
- A Line Reactor also reduces the harmonic left by the VFD on the network.
- ▶ Line Reactors are selected according to the current/voltage capability of the VFD.
- Unless otherwise specified by a manufacturer, a 3% or 5% reactor should be used in the following circumstances :
  - The line is subject to disturbances such as power surges, peak voltages and transient voltages.
  - ▶ The supply line is very rigid (more than 10 times the KVA capacity of the connected VFD).
  - When harmonic distortions are a problem (See: IEEE-519 Harmonic Control in Electrical Power Systems).

# **Application Note**

### When to use a Line or Load Reactor



- A Line Reactor also provides protection to the VFD in the event of a short-circuit.
- If the KVA capacity of the distribution transformer exceeds the capacity of the VFD by a factor of 10, it would be advisable to install a Line Reactor to reduce the short-circuit capacity.
- The reactor impedance to be selected depends on the short-circuit capacity of the VFD and the distribution transformer.
- Example: 150KVA 575VAC 150amp power transformer with 3% & 5% impedance reactors.
- 150/0,03 = 5,025A short-circuit capacity
- 150/0,05 = 3,000A short-circuit capacity

# **Application Note**

### When to use a Line or Load Reactor

- An output reactor, or Load is used to protect the motor and the cable that powers it.
- The VFD generates a PWM voltage, 3 phase at high frequency with a very short rise time. This "noise" is amplified by the additional capacitance when the cables are long. The resulting voltage peaks can exceed the insulation capacity of the powered motor and cause insulation degradation over time and premature motor failure.
- A Load Reactor should be used with cable length beyond 40 feet, 575/3/60, at a carrier frequency of 3kHz. This may vary depending on the type of engine.
- If the motor meets the NEMA MG-1 Part 31 standard, it is possible to exceed 100 feet without using a reactor. Even 650 feet for some manufacturers.
- If the cable length is between 500 and 1000 feet, you should use a dV / dT type filter for better protection.



### **Constant Torque vs Constant HP**

| •Constant Torque Zone            | <ul> <li>Constant HP Zone</li> </ul> |
|----------------------------------|--------------------------------------|
| •HP = <u>Torque (lb.ft) *RPM</u> | •Couple (lb/ft) = <u>HP *5252</u>    |
| 5252                             | RPM                                  |
| Ex:                              | Ex:                                  |
| 5HP 1762 RPM = 14,88lb/ft        | 5HP 1762 RPM = 14,88lb/ft            |
| 50% of the speed.                | 150% of the speed.                   |
| HP = <u>14,88 * 881</u>          | Couple = <u>5 * 5252</u>             |
| 5252                             | 1762*1.5 (2643)                      |
| HP = 2,5                         | Toque = 9,93 lb/ft                   |





#### Variable Torque Load

Torque is proportional to the square of the speed HP is proportional to the cube of the speed

Small change in speed makes a big difference in the torque required to do the job.

Small change in speed makes a big difference in the amount of HP needed to do the job.







# Different Types of Single Phase Motors

| Motor Type                | Start Torque | Efficiency | Application                                                                                                                                                |
|---------------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shaded Poles              | Small        | Small      | Direct drive fans                                                                                                                                          |
| Auxiliary Start Winding   | Small        | Medium     | Direct drive fans, centrifugal<br>pumps, air and refrigeration<br>compressors                                                                              |
|                           | Medium       | Medium     | Belt fans, air and refrigeration<br>compressors, large appliances                                                                                          |
| Start Capacitor           | Medium       | Medium     | Belt fans, compressors,<br>centrifugal pumps, industrial<br>equipment, farming, large<br>appliances, industrial<br>appliances, office equipments           |
|                           | High         | Medium     | Volumetric pumps, air and refrigeration compressors                                                                                                        |
| Medium                    |              | High       | Belt fans, centrifugal pumps                                                                                                                               |
| Start & Run Capacitor     | High         | High       | Volumetric pumps, air and<br>refrigeration compressors,<br>industrial equipment, farming,<br>large appliances, industrial<br>appliances, office equipments |
| Permanent Split Capacitor | Small        | High       | Direct drive fans, efrigeration<br>compressors, office<br>equipments                                                                                       |

## Permanent Split Capacitor Motor



### Capacitor Start, Induction Run Motor







### Capacitor Start, Capacitor Run Motor



### ECM Motor

An ECM motor is an electrically commutated permanent magnet brushless DC motor (Fig 6-1).

An electronic device supplies the coils with precisely controlled voltages, and uses position sensors for synchronization.



#### Fig 6-1: Electrically Commutated Motor (ECM)

The electronic controller can be programmed to vary the torque-speed characteristics of the motor for a wide variety of manufacturers' applications such as fans and drives.



### Auxiliary Start Winding Motor

